The index calculus method using non-smooth polynomials

نویسندگان

  • Theodoulos Garefalakis
  • Daniel Panario
چکیده

We study a generalized version of the index calculus method for the discrete logarithm problem in Fq , when q = pn, p is a small prime and n→∞. The database consists of the logarithms of all irreducible polynomials of degree between given bounds; the original version of the algorithm uses lower bound equal to one. We show theoretically that the algorithm has the same asymptotic running time as the original version. The analysis shows that the best upper limit for the interval coincides with the one for the original version. The lower limit for the interval remains a free variable of the process. We provide experimental results that indicate practical values for that bound. We also give heuristic arguments for the running time of the Waterloo variant and of the Coppersmith method with our generalized database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Polynomial Sieve

An important component of the index calculus methods for finding discrete logarithms is the acquisition of smooth polynomial relations. Gordon and McCurley (1992) developed a sieve to aid in finding smooth Coppersmith polynomials for use in the index calculus method. We discuss their approach and some of the difficulties they found with their sieve. We present a new sieving method that can be a...

متن کامل

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

متن کامل

Algorithm xxx: The Matlab Postprocessing Toolkit

Spectral methods approximate functions by projection onto a space PN of orthogonal polynomials of degree ≤ N . When the underlying function is periodic trigonometric (Fourier) polynomials are employed while a popular choice for non-periodic functions are the Chebyshev polynomials. Legendre polynomials are another option in the non-periodic case but are not as popular in applications due to the ...

متن کامل

Trajectory Planning Using High Order Polynomials under Acceleration Constraint

The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...

متن کامل

NON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS

A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2001